16 research outputs found

    Development of an autonomous mobile towing vehicle for logistic tasks

    Get PDF
    Frequently carrying high loads and performing repetitive tasks compromises the ergonomics of individuals, a recurrent scenario in hospital environments. In this paper, we design a logistic planner of a fleet of autonomous mobile robots for the automation of transporting trolleys around the hospital, which is independent of the space configuration, and robust to loss of network and deadlocks. Our robotic solution has an innovative gripping system capable of grasping and pulling nonmodified standard trolleys just by coupling a plate. Robots are able to navigate autonomously, to avoid obstacles assuring the safety of operators, to identify and dock a trolley, to access charging stations and elevators, and to communicate with the latter. An interface was built allowing users to command the robots through a web server. It is shown how the proposed methodology behaves in experiments conducted at the Faculty of Engineering of the University of Porta and Braga's Hospital.This work is financed by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation- COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency, FCT-Fundação para a Ciência e a Tecnologia, within project SAICTPAC/0034/2015 - POCI-01- 0145-FEDER-016418. Authors would like to acknowledge to Trivalor, Itau and Gertal for the support of the project RDH.info:eu-repo/semantics/publishedVersio

    Clever robot

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Major Automação). Faculdade de Engenharia. Universidade do Porto. 200

    Robust mobile robot localization based on a security laser: An industry case study

    Get PDF
    This paper aims to address a mobile robot localization system that avoids using a dedicated laser scanner, making it possible to reduce implementation costs and the robot's size. The system has enough precision and robustness to meet the requirements of industrial environments. Design/methodology/approach - Using an algorithm for artificial beacon detection combined with a Kalman Filter and an outlier rejection method, it was possible to enhance the precision and robustness of the overall localization system. Findings - Usually, industrial automatic guide vehicles feature two kinds of lasers: one for navigation placed on top of the robot and another for obstacle detection (security lasers). Recently, security lasers extended their output data with obstacle distance (contours) and reflectivity. These new features made it possible to develop a novel localization system based on a security laser. Research limitations/implications - Once the proposed methodology is completely validated, in the future, a scheme for global localization and failure detection should be addressed. Practical implications - This paper presents a comparison between the presented approach and a commercial localization system for industry. The proposed algorithms were tested in an industrial application under realistic working conditions. Social implications - The presented methodology represents a gain in the effective cost of the mobile robot platform, as it discards the need for a dedicated laser for localization purposes. Originality/value - This paper presents a novel approach that benefits from the presence of a security laser on mobile robots (mandatory sensor when considering industrial applications), using it simultaneously with other sensors, not only to guarantee safety conditions during operation but also to locate the robot in the environment. This paper is also valuable because of the comparison made with a commercialized system, as well as the tests conducted in real industrial environments, which prove that the approach presented is suitable for working under these demanding conditions.Project "TEC4Growth" - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-000020" is fnanced by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF).info:eu-repo/semantics/publishedVersio

    3 DoF/6 DoF Localization System for Low Computing Power Mobile Robot Platforms

    Get PDF
    Mobile robot platforms have a wide range of hardware configurations in order to accomplish challenging tasks and require an efficient and accurate localization system to navigate in the environment. The objective of this work is the evaluation of the developed Dynamic Robot Localization (DRL) system in three computing platforms, with CPUs ranging from low to high end (Intel Atom, Core i5, and i7), in order to analyze the configurations that can be used to adjust the trade-offs between pose estimation accuracy and the associated computing resources required. The DRL is capable of performing pose tracking and global pose estimation in both 3 and 6 Degrees of Freedom (DoF) using point cloud data retrieved from LIDARs and RGB-D cameras and achieved translation errors of less than 30 mm and rotation errors of less than 5° when evaluated in three environments. The sensor data retrieved from three testing platforms was processed and the detailed profiling results were analyzed. Besides pose estimation, the self-localization system is also able to perform mapping of the environment with probabilistic integration or removal of geometry and can use surface reconstruction to minimize the impact of sensor noise. These abilities will allow the fast deployment of mobile robots in dynamic environments

    Robust mobile robot localization based on security laser scanner

    Get PDF
    This paper addresses the development of a new localization system based on a security laser presented on most AGVs for safety reasons. An enhanced artificial beacons detection algorithm is applied with a combination of a Kalman filter and an outliers rejection method in order to increase the robustness and precision of the system. This new robust approach allows to implement such system in current AGVs. Real results in industrial environment validate the proposed methodology.The work presented in this paper, being part of the Project "NORTE-07-0124-FEDER-000060" is financed by the North Portugal Regional Operational Programme (ON.2 – O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF), and by national funds, through the Portuguese funding agency, Fundação para a Ciência e a Tecnologia (FCT).info:eu-repo/semantics/publishedVersio

    Autonomous robot navigation for automotive assembly task: an industry use-case

    Get PDF
    Automobile industry faces one of the most flexible productivity caused by the number of customized models variants due to the buyers needs. This fact requires the production system to introduce flexible, adaptable and cooperative with humans solutions. In the present work, a panel that should be mounted inside a van is addressed. For that purpose, a mobile manipulator is suggested that could share the same space with workers helping each other. This paper presents the navigation system for the robot that enters the van from the rear door after a ramp, operates and exits. The localization system is based on 3DOF methodologies that allow the robot to operate autonomously. Real tests scenarios prove the precision and repeatability of the navigation system outside, inside and during the ramp access of the van.This work is financed by the ERDF- European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation- COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency, FCT- Fundação para a Ciência ea Tecnologia, within project SAICTPAC/0034/2015 - POCI-01- 0145-FEDER-016418.info:eu-repo/semantics/publishedVersio

    2D cloud template matching - a comparison between iterative closest point and perfect match

    Get PDF
    Self-localization of mobile robots in the environment is one of the most fundamental problems in the robotics field. It is a complex and challenging problem due to the high requirements of autonomous mobile vehicles, particularly with regard to algorithms accuracy, robustness and computational efficiency. In this paper we present the comparison of two of the most used map-matching algorithm, which are the Iterative Closest Point and the Perfect Match. This category of algorithms are normally applied in localization based on natural landmarks. They were compared using an extensive collection of metrics, such as accuracy, computational efficiency, convergence speed, maximum admissible initialization error and robustness to outliers in the robots sensors data. The test results were performed in both simulated and real world environments.info:eu-repo/semantics/publishedVersio

    Low cost self-localization system with two beacons

    Get PDF
    The use of mobile robots for advertisement or entertainment purposes has been subject to several approaches without great success, mainly due to the high cost of the robots and their maintenance. This paper presents the self-localization system of an easy to use, low cost yet robust robotic platform which, expectedly, will have an increased value in the market. The low cost self-localization system of the platform is based on the detection of two infrared-emitting beacons (using a simple infrared sensor) and odometry. It allows computing both the position and the orientation of the robot in an external referential. To achieve this, an algorithm based on geometric considerations has been developed. Since it does not require too much computing power, it is implementable in low cost computing platforms such as small microcontrollers

    Characterization of position and orientation measurement uncertainties in a low-cost mobile platform

    Get PDF
    Due to measurement errors, position and orientation measures provided by mobile platform localization systems remain useless until their respective measurement uncertainties are characterized. This paper presents a method of characterizing position and orientation measurement uncertainties that does not require considerable computing power and has been implemented in an easy to use, low-cost yet robust robotic platform
    corecore